Спецификация конкурсных материалов для проведения практического этапа Московского конкурса межпредметных навыков и знаний «Интеллектуальный мегаполис. Потенциал» в номинации «Инженерный класс» по направлению «Курчатовские классы»

1. Назначение конкурсных материалов

Материалы *практического* этапа Московского конкурса межпредметных навыков и знаний «Интеллектуальный мегаполис. Потенциал» (далее – Конкурс) предназначены для оценки уровня *практической* подготовки участников Конкурса.

2. Условия проведения

Практический этап Конкурса проводится в очной или дистанционной форме на базе ВУЗа. При выполнении работы обеспечивается строгое соблюдение порядка организации и проведения Конкурса. Задания экзаменационного билета практического этапа конкурса выполняются с использованием следующего программного обеспечения (ПО):

Кейс № 1: высокоомный милливольтметр (допустимо использовать лабораторный pHметр-милливольтметр pH-150м), термостат, электрохимическая ячейка, солевой мостик, измерительный платиновый окислительно-восстановительный электрод (OB электрод), хлорсеребряный электрод сравнения, стаканчики на 50 мл, пипетки Мора на 10,0 мл,

пипетка (тип 2-1-2-1) градуированная на 1,0 мл (возможно применение микропипетки, дозатора пипеточного), промывалка, пинцет.

Реактивы: 0,1 моль/л растворы NaNO₂ и NaNO₃, концентрированная HNO₃, 0,001 моль/л раствор КОН.

Кейс № 2: ПО Ultimaker Cura; САПР: Компас-3D, Solid Works, Inventor, AutoCAD, T-flex и др. (в зависимости от ВУЗа-площадки)

3. Продолжительность выполнения

На выполнение заданий практического этапа Конкурса отводится 90 минут.

4. Содержание и структура

Задания практического этапа Конкурса разработаны преподавателями образовательной организации высшего образования, участвующей в проекте «Инженерный класс в московской школе».

Индивидуальный вариант участника включает два независимых кейса, содержание которых соответствует программам элективных курсов «Исследовательский практикум по физической химии» и «Технологии современного производства».

Индивидуальный вариант участника, выбравшего кейс № 1, включает 3 задания, базирующихся на содержании курса «Исследовательский практикум по физической химии». Индивидуальный вариант участника, выбравшего кейс № 2, включает 4 задания, базирующихся на содержании элективного курса «Технологии современного производства».

5. Система оценивания

Задание считается выполненным, если ответ участника совпал с эталоном. Максимальный балл за выполнение всех заданий – 60 баллов. Для получения максимального балла за *практический* этап Конкурса необходимо дать верные ответы на все задания выбранного кейса.

6. Приложения

- 1. План конкурсных материалов для проведения практического этапа Конкурса.
- 2. Демонстрационный вариант конкурсных заданий практического этапа Конкурса.

План конкурсных материалов для проведения практического этапа Конкурса

	Уникальные Контролируемые					
Nº	Уровень	кодификаторы	требования к	Балл		
задания	сложности	Κομννηςα		Daili		
Кайа №1						
			электрохимическая система,			
			электрод, электрод сравнения,			
	базовый	Электрохимическая	электродвижущая сила,	10		
1.1		Система	потенциалопределяющие			
		(Гальванический	ионы, диффузионный			
		элемент)	потенциал, солевои мостик.			
			знать методику составления			
			электрохимических систем			
			(гальванических элементов).			
		Электродвижущая сила	Электродные процессы,			
1.2	повышенный	гальванического	уравнение Нернста для ЭДС,	Балл 10 10 20 30 20 20 10 10		
1.2		элемента с ОВ	константа равновесия			
		электродами	электрохимического процесса,			
			протекающего в системе.			
		Электродныи	Электродные процессы,			
		потенциал	уравнение Нернста для			
1.2	высокий	исследуемои ОВ	потенциала ОВ электрода,	30		
1.3		системы:	активность. Уравнение Дебая-			
		экспериментальныи,	Хюккеля (предельныи закон).			
		расчетный и	Расчет ОВ потенциала по			
		справочный	уравнению Нернста.			
Сумма баллов: 6						
		Кейс №2		I		
21	базовый	Обзор необходимых	По чертежу построить 3D	20		
2.1	Оазовыи	инструментов	модель в САПР.	20		
		Параметризация и	Масса изделия и импорт 3D			
2.2	повышенный	оптимизация моделей	модели в ПО Ultimaker Cura	20		
		для 3D печати	модели в по опшакет сига.			
23	рысокий	Параметры 3D пецати	Настроить параметры печати в	10		
2.3	BDICORNIN	парамстры эр почати	ПО Ultimaker Cura.	10		
2.4	высокий		Разместить модель таким			
		Экспорт модели для 3D	образом, чтобы создалось	10		
		печати	наименьшее количество			
			поддержек.			
			Сумма баллов:	60		

Демонстрационный вариант конкурсных заданий практического этапа Конкурса

Кейс №1

Исследование электрохимической системы с окислительно-восстановительным электродом (ОВ электродом) NO₃⁻, NO₂⁻, OH⁻ | Pt

Описание работы. Составить гальванический элемент, содержащий окислительновосстановительный электрод NO₃⁻, NO₂⁻, OH⁻ | Pt и электрод сравнения Ag|AgCl|KCl, измерить ЭДС и электродный потенциал относительно электрода сравнения, а также выполнить расчеты ЭДС и потенциалов по уравнению Нернста с учетом активности потенциалопределяющих ионов.

Последовательность выполнения работы

- 1. Для приготовления окислительно-восстановительной системы, содержащей OB пару NO₃⁻ /NO₂⁻ в стаканах на 50 мл смешивают по 10 мл 0,1 моль/л раствора NaNO₃ и 10 мл 0,1 моль/л раствора NaNO₂, добавляют 0,2 мл 0,001 моль/л раствора КОН при помощи градуированной пипетки на 1 мл и измеряют pH. (Можно использовать микропипетки на 0,2 мл, дозаторы пипеточные). Готовят не менее трех образцов данной системы.
- 2. Солевой мост заполняют насыщенным раствором хлорида калия и плотно закрывают с обоих концов пробкой из стекловаты.
- 3. Платиновые электроды выдерживают в течение 5 мин в концентрированной HNO₃, промывают водопроводной, затем дистиллированной водой, сушат фильтровальной бумагой. Электроды опускают в окислительно-восстановительную систему (растворы).

Собирают электрохимическую систему (гальванический элемент), помещают в термостат на 25°С, выдерживают 15 минут и подключают измерительный прибор. При установившемся показании прибора результат заносят в табл. 1. Аналогично выполняют измерения с двумя другими образцами электрохимической системы.

Таблица 1

Номе р образ ца	рН	a(0H ⁻)	<i>Е</i> _{г-э,эксп.} В	E _{Ag AgCl} , (ЭСр- 10103/3,5)* В	Е _{ОВ эксп.} , В	$E^{0}_{r-9}, \\ B$	Ka
1							
2				0,208			
3							

*Организатор может использовать хлоридсеребряный электрод с другой концентрацией электролита, в этом случае указывается соответствующий потенциал электрода сравнения.

Обработка результатов

 $t = ^{\circ}C$

1. Записывают схему исследуемого гальванического элемента.

2. Записывают уравнения электрохимических реакций, протекающих на электродах, и выражения электродных потенциалов в соответствии с уравнением Нернста.

3. Определяют значение электродного потенциала на основании экспериментального значения ЭДС: ЭДС = $E_+ - E_-$

4. Составляют суммарную реакцию, протекающую в гальваническом элементе, используя справочные данные по стандартным электродным потенциалам исследуемого электрода и хлоридсеребряного электрода сравнения и находят значение стандартной ЭДС исследуемого

гальванического элемента E_{r-9}^0 для последующего расчета константы равновесия *Ка*. Значения вносят в таблицу 1.

5. Рассчитывают ионную силу растворов *I* с учётом разбавления при смешении электролитов, принимая во внимание, что численными значениями молярных и моляльных концентраций электролитов в разбавленных водных растворах можно пренебрегать. В расчетах в этом случае можно заменять одни концентрации другими. Добавление щелочи практически не меняет ионную силу среды (концентрация щелочи примерно 10⁻⁵ моль/л).

6. Рассчитывают коэффициенты активности (γ_i) и активность (*a_{mi}*) потенциалопределяющих ионов, используя уравнение Дебая–Хюккеля (предельный закон):

$$\lg \gamma_i = -0.509 z_i^2 \sqrt{I},$$

где z_i – заряд иона, $I = \frac{1}{2} \sum m_i z_i^2$ – ионная сила раствора, m_i – моляльность ионов, моль/кг.

Значения вносят в таблицу 2. Следует учитывать, что область применимости уравнения Дебая– Хюккеля (первое приближение) ограничено растворами с концентрацией не более 0,01 моль/л. Точность расчета коэффициентов активности для растворов с большей концентрацией снижается.

7. Используя уравнение Нернста для электродного потенциала исследуемого OB электрода, рассчитывают значение стандартного электродного потенциала $E_{OB pacy}^{0}$ по экспериментальному значению $E_{OB эксп.}$ и активностям всех ионов, участвующих в электродной реакции. Значение вносят в таблицу 2.

Таблица 2

Номер образца	a(0H ⁻)	коэффициенты активности (γ _i), для ионов NO ₃ и NO ₂	активность ионов NO ₃ и NO ₂ (<i>a</i> _{mi})	Е _{ОВ эксп} В	Е ⁰ _{ОВ расч.,} В
1					
2					
3					

8. В таблицу 3 вносят справочное значение стандартного электродного потенциала $E_{OB cправ}^0$ для исследуемого OB электрода и значение стандартного электродного потенциала $E_{OB pac4.}^0$ этого же OB электрода, рассчитанного по экспериментальным значениям $E_{OB эксп..}$ и значениям активностей всех ионов, участвующих в электродной полуреакции.

9. Рассчитывают относительное расхождение потенциалов и результат заносят в таблицу 3.

 $\Delta = |(\langle E_{\text{расч.}}^0 \rangle - E_{\text{справ.}}^0)| \cdot \frac{100}{E_{\text{справ.}}^0} K_{\text{справ.}}^0$, \mathcal{M} . Для расчета процента отклонения используют среднее значение потенциала ($\langle E_{\text{расч.}}^0 \rangle$.

Объясняют причину расхождения значений стандартного потенциала справочного $E_{OB cправ.}^{0}$ и $E_{OB pacy.}^{0}$, рассчитанного по экспериментальным данным.

Таблица 3

 $t = ^{\circ}C$

ОВ электрод	Е ⁰ _{ОВ справ.} , В	Е ⁰ _{ОВ расч.} , В	% расхождения Е ⁰ _{ОВ справ.} и Е ⁰ _{ОВ расч.}
NO_3^- , NO_2^- , $OH^- Pt$			

Б1 Уровень сложности

Постройте 3D модель по чертежу (см. рисунок 1). Измерьте объем модели. - 20 баллов.

П2 Уровень сложности

Внесите изменение в модель – примените новое значение размеру, отмеченному буквой А: 38 мм. Примените к модели материал сталь 20 ГОСТ 1050-2013. Измерьте массу модели. Импортируйте файл с 3D моделью в ПО Ultimaker Cura. - 20 баллов.

ВЗ Уровень сложности

Добавьте в слайсер новый принтер из библиотеки – Voron 0 (без подключения к сети). Установки принтера – по умолчанию, при выборе параметров печати использовать печатающую голову типа V6 с соплом 0.4 мм.

Задайте параметры, указанные в таблице 1. Температуру печати и температуру стола укажите наиболее подходящую для материала PLA. Остальные параметры, остаются по умолчанию. - 10 баллов.

В4 Уровень сложности. Разместите 3D модель таким образом, чтобы создалось наименьшее количество поддержек (определяется по количеству материала). - 10 баллов.

Рисунок 1. Демонстрационное задание.

Таблица 1. Параметры печати

Параметр	Значение
Профиль	Fast
Высота первого слоя	0.3мм
Высота слоя	0.2мм
Ширина линии	0.4 мм
Ширина линии первого слоя	150 %
Толщина стенки	3 линии
Слои крышки/дна	5
Плотность заполнения	30%
Шаблон заполнения	Гиройд
Плотность поддержки	15%
Скорость печати	60 мм/с
Скорость печати первого слоя	20 мм/с
Шаблон поддержек	Зиг Заг
Скорость вентилятора	70%, на первых двух слоях выключен

Критерии снижения оценки выполненных заданий

Критерий	Количество снижаемых
	баллов
Модель размещена таким образом, что количество	10
поддержек не минимально (учитывается масса	
затрачиваемого материала).	
Неверно заданы параметры печати	10
Неверно подобраны температуры сопла и стола для	10
применяемого материала печати	
Изменения внесены некорректно (контролируется масса	15
модели)	
3D модель построена неверно (объем модели)	15

Ссылки на рекомендуемое программное обеспечение

1. ПО «Компас-3D v21.Учебная версия»:

https://edu.ascon.ru/main/download/cab/

2. ПО «Учебная версия T-FLEX CAD»:

https://www.tflexcad.ru/download/t-flex-cad-free/

3. ПО «Ultimaker Cura»:

https://ultimaker.com/software/ultimaker-cura